\
JAKARTA EE

Jakarta Data

NAPSHOT, June 16, 2023: Draft

Table of Contents

Copyright
Eclipse Foundation Specification License
Disclaimers
Jakarta Data
1. Introduction
1.1. Goals
1.2. Non-Goals
1.3. Conventions
1.4. Jakarta Data Project Team
1.4.1. Project Leads
1.4.2. Committers
1.4.3. Mentor
1.4.4. Contributors
2. Repository
2.1. Repositories on Jakarta Data
2.2. Entity Classes
2.3. Queries Methods
2.3.1. Using the Query Annotation
2.3.2. Query by Method
2.3.3. Entity Property Names
2.4. Special Parameter Handling
2.5. Precedence of Sort Criteria
2.5.1. Sort Criteria within Query Language
2.5.2. Static Mechanisms for Sort Criteria
2.5.3. Dynamic Mechanisms for Sort Criteria
2.5.4. Examples of Sort Criteria Precedence
2.6. Keyset Pagination
2.6.1. Example of Appending to Queries for Keyset Pagination
2.6.2. Avoiding Missed and Duplicate Results
2.6.3. Restrictions on use of Keyset Pagination
2.6.4. Keyset Pagination Example with Sorts
3. Jakarta Data CDI Extension
3.1. Entity Annotation Class
3.2. Jakarta Data Provider Name
4. Interoperability with other Jakarta EE Specifications
4.1. Jakarta Transactions Usage
4.2. Interceptor Annotations on Repository Methods

© © 00 N 9 o oo oo 1o U1 o U1 oyl NDN

S e ey
© © ©O© 0 00 00 J O O U1 U1 b B B BN W W o o

Specification: Jakarta Data
Version: 1.0.0-SNAPSHOT
Status: Draft

Release: June 16, 2023

Copyright

Copyright (c) {inceptionYear}, {currentYear} Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

* All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS,” AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Jakarta Data

Chapter 1. Introduction

The Jakarta Data specification provides an API for easier data access. A Java developer can split the
persistence from the model with several features, such as the ability to compose custom query
methods on a Repository interface where the framework will implement it.

There is no doubt about the importance of data around the application. We often talk about a
stateless application, where we delegate the application’s state to the database.

Dealing with a database is one of the biggest challenges within a software architecture. In addition
to choosing one of several options on the market, it is necessary to consider the persistence
integrations. Jakarta Data makes life easier for Java developers.

1.1. Goals

Jakarta Data works in a tight integration between Java and a persistence layer, where it has the
following specification goals:

* Be a persistence agnostic APIL. Therefore, through abstractions, it will connect different types of
databases and storage sources.

* Be a pluggable and extensible API. Even when the API won’t support a particular behavior of a
storage engine, it might provide an extensible API to make it possible.

1.2. Non-Goals

As with any software component, these decisions come with trade-offs and the following non-goals:

* Provide specific features of Jakarta Persistence, Jakarta NoSQL, etc. Those APIs have their own
specifications.

* Replace the Jakarta Persistence or Jakarta NoSQL specifications. Indeed, Jakarta Data will work
as a complement to these specifications as an agnostic APIL

1.3. Conventions

1.4. Jakarta Data Project Team

This specification is being developed as part of Jakarta Data project under the Jakarta EE
Specification Process. It is the result of the collaborative work of the project committers and various
contributors.

1.4.1. Project Leads

* Nathan Rauh

e Otavio Santana

https://projects.eclipse.org/content/nathan-rauh-committer-jakarta-data
https://projects.eclipse.org/content/otavio-santana-committer-jakarta-data

1.4.2. Committers

* Denis Stepanov

* Dmitry Kornilov
* Emily Jiang

* Graeme Rocher

* James Krueger

* James Stephens

* Michael Redlich
* Nathan Rauh

* Otavio Santana

* Werner Keil

1.4.3. Mentor

* Dmitry Kornilov

1.4.4. Contributors

The complete list of Jakarta Data contributors may be found here.

https://projects.eclipse.org/content/denis-stepanov-committer-jakarta-data
https://projects.eclipse.org/content/dmitry-kornilov-committer-jakarta-data
https://projects.eclipse.org/content/dmitry-kornilov-committer-jakarta-data
https://projects.eclipse.org/content/graeme-rocher-committer-jakarta-data
https://projects.eclipse.org/content/james-krueger-committer-jakarta-data
https://projects.eclipse.org/content/james-stephens-committer-jakarta-data
https://projects.eclipse.org/content/michael-redlich-committer-jakarta-data
https://projects.eclipse.org/content/nathan-rauh-committer-jakarta-data
https://projects.eclipse.org/content/otavio-santana-committer-jakarta-data
https://projects.eclipse.org/content/werner-keil-committer-jakarta-data
https://projects.eclipse.org/content/dmitry-kornilov-committer-jakarta-data
https://github.com/jakartaee/data/graphs/contributors

Chapter 2. Repository

In Domain-Driven Design (DDD) the repository pattern encapsulates the logic required to access
data sources. The repository pattern consolidates data access functionality, providing better
maintainability and decoupling the infrastructure or technology used to access databases from the
domain model layer.

®

Layer?

Web Service

This pattern focuses on the closest proximity of entities and hides where the data comes from.

The Repository pattern is a well-documented way of working with a data source. In the book
Patterns of Enterprise Application Architecture, Martin Fowler describes a repository as follows:

A repository performs the tasks of an intermediary between the domain
model layers and data mapping, acting in a similar way to a set of domain
objects in memory. Client objects declaratively build queries and send them
to the repositories for answers. Conceptually, a repository encapsulates a set
of objects stored in the database and operations that can be performed on
them, providing a way that is closer to the persistence layer. Repositories
also support the purpose of separating, clearly and in one direction, the
dependency between the work domain and the data allocation or mapping.

It also becomes very famous in Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans.

2.1. Repositories on Jakarta Data

A repository abstraction aims to significantly reduce the boilerplate code required to implement

data access layers for various persistence stores.
The parent interface in Jakarta Data repository abstraction is DataRepository.

By default, Jakarta Data has support for three interfaces. However, the core is extensible. Therefore,
a provider might extend one or more interfaces to a specific data target.

DataRepository<

CrudRepository< ReactiveRepository<

PageableRepository<

* Interface to generic CRUD operations on a repository for a specific type. This one we can see
more often on several Java implementations.

* Interface with generic CRUD operations using the pagination feature.

* Interface for generic CRUD operations on a repository for a specific type. This repository follows
reactive paradigms.

From the Java developer perspective, create an interface that is annotated with the Repository
annotation and optionally extends one of the built-in repository interfaces.

So, given a Product entity where the ID is a long type, the repository would be:

public interface ProductRepository extends CrudRepository<Product, Long> {

}

There is no nomenclature restriction to make mandatory the Repository suffix. Such as, you might
represent the repository of the Car’s entity as a Garage instead of CarRepository.

public interface Garage extends CrudRepository<Car, String> {

}

2.2. Entity Classes

Entity classes are simple Java objects with fields or accessor methods designating each entity
property.

You may use jakarta.persistence.Entity and the corresponding entity-related annotations of the
Jakarta Persistence specification in the same package (such as jakarta.persistence.Id and
jakarta.persistence.Column) to define and customize entities for relational databases.

You may use jakarta.nosql.Entity and the corresponding entity-related annotations of the Jakarta
NoSQL specification in the same package (such as jakarta.nosql.Id and jakarta.nosql.Column) to
define and customize entities for NoSQL databases.

Applications are recommended not to mix Entity annotations from different models for the sake of
clarity and to allow for the Entity annotation to identify which provider is desired in cases where
multiple types of Jakarta Data providers are available.

Repository implementations will search for the Entity annotation(s) they support and ignore other
annotations.

2.3. Queries Methods

In Jakarta Data, besides finding by an ID, custom queries can be written in two ways:

* Through Query annotation: It will create a method annotated with the @Query with the query.

» Using query by method convention: Using some pattern vocabulary will provide a query.

Due to the variety of data sources, those resources might not work; it varies based
A on the Jakarta Data implementation and the database engine, which can provide
queries on more than a Key or ID or not, such as a Key-value database.

2.3.1. Using the Query Annotation

The Query’s annotation will support a search expression as a String. The specification won’t define
the query syntax, which might vary between vendors and data sources, such as SQL, JPA-QL,
Cypher, CQL, etc.

public interface ProductRepository extends CrudRepository<Product, Long> {
("SELECT p FROM Products p WHERE p.name=?1") // example in JPQL
Optional<Product> findByName(String name);
}

Jakarta Data also includes the Param annotation to define a binder annotation, where as with the
query expression, each vendor will express the syntax freely such as 7, @, etc..

public interface ProductRepository extends CrudRepository<Product, Long> {
("SELECT p FROM Products p WHERE p.name=:name") // example in JPQL
Optional<Product> findByName(("name") String name);

}

2.3.2. Query by Method

The Query by method mechanism allows for creating query commands by conventions.

E.g.

public interface ProductRepository extends CrudRepository<Product, Long> {

List<Product> findByName(String name);

("price")
List<Product> findByNameLike(String namePattern);

(value = "price", descending = true)
List<Product> findByNamelLikeAndPricelessThan(String namePattern, float priceBelow);

The parsing query method name has two parts: the subject and the property.

The first part defines the query’s subject or condition, and the second the condition value; both
forms the predicate.

A predicate can refer only to a direct property of the managed entity. We also have the option to
handle entities with another class on them.

2.3.3. Entity Property Names

Within an entity, property names must be unique ignoring case. For simple entity properties, the
field or accessor method name serves as the entity property name. In the case of embedded classes,
entity property names are computed by concatenating the field or accessor method names at each
level.

Assume an Order entity has an Address with a ZipCode. In that case, the access is
order.address.zipCode. This form is used within annotations, such as @Query,

public interface OrderRepository extends CrudRepository<Order, Long> {

("SELECT order FROM Order order WHERE order.address.zipCode=71")
List<Order> withZipCode(ZipCode zipCode);

For queries by method name, the resolution algorithm starts by interpreting the whole part
(AddressZipCode) as the property and checks the domain class for a property with that name
(uncapitalized). If the algorithm succeeds, it uses that property.

10

public interface OrderRepository extends CrudRepository<Order, Long> {

Stream<Order> findByAddressZipCode(ZipCode zipCode);

Although this should work for most cases, to resolve this ambiguity, you can use _ inside your
method name to manually define traversal points.

public interface OrderRepository extends CrudRepository<Order, Long> {

Stream<Order> findByAddress_ZipCode(ZipCode zipCode);

g Define as a priority following standard Java naming conventions, camel case,
using underscore as the last resort.

In queries by method name, Id is an alias for the entity property that is designated as the id. Entity
property names that are used in queries by method name must not contain reserved words.

2.3.3.1. Query Methods Keywords

The following table lists the subject keywords generally supported by Jakarta Data.

Keyword Description

findBy General query method returning the repository
type.

deleteBy Delete query method returning either no result

(void) or the delete count.

countBy Count projection returning a numeric result.
existsBy Exists projection, returning typically a boolean
result.

Jakarta Data implementations support the following list of predicate keywords to the extent that the
database is capable of the behavior. A repository method will raise
jakarta.data.exceptions.DataException or a more specific subclass of the exception if the database
does not provide the requested functionality.

Keyword Description Method signature Sample
And The and operator. findByNameAndYear
Or The or operator. findByNameOrYear

11

Keyword

Between

Empty

LessThan

GreaterThan

LessThanEqual

GreaterThanEqual

Like

IgnoreCase

In

Null

True

False

OrderBy

OrderBy___ Desc

12

Description

Find results where the property
is between the given values

Find results where the property
is an empty collection or has a
null value.

Find results where the property
is less than the given value

Find results where the property
is greater than the given value

Find results where the property
is less than or equal to the given
value

Find results where the property
is greater than or equal to the
given value

Finds string values "like" the
given expression

Requests that string values be
compared independent of case
for query conditions and
ordering.

Find results where the property
is one of the values that are
contained within the given list

Finds results where the
property has a null value.

Finds results where the
property has a boolean value of
true.

Finds results where the
property has a boolean value of
false.

Specify a static sorting order
followed by the property path
and direction of ascending.

Specify a static sorting order
followed by the property path
and direction of descending.

Method signature Sample

findByDateBetween

deleteByPendingTasksEmpty

findByAgeLessThan

findByAgeGreaterThan

findByAgeLessThanEqual

findByAgeGreaterThanEqual

findByTitleLike

findByStreetNamelgnoreCaseLi

ke

findByIdIn

findByYearRetiredNull

findBySalariedTrue

findByCompletedFalse

findByNameOrderByAge

findByNameOrderByAgeDesc

Keyword Description Method signature Sample

OrderBy____Asc Specify a static sorting order findByNameOrderByAgeAsc
followed by the property path
and direction of ascending.

OrderBy___ (Asc|Desc)*(Asc|De Specify several static sorting findByNameOrderByAgeAscNa
sc) orders meDescYearAsc

Logical Operator Precedence

For relational databases, the logical operator And takes precedence over Or, meaning that And is
evaluated on conditions before Or when both are specified on the same method. For other database
types, the precedence is limited to the capabilities of the database. For example, some graph
databases are limited to precedence in traversal order.

2.4. Special Parameter Handling

Jakarta Data also supports particular parameters to define pagination and sorting.

Jakarta Data recognizes, when specified on a repository method after the query parameters,
specific types, like Limit, Pageable, and Sort, to dynamically apply limits, pagination, and sorting to
queries. The following example demonstrates these features:

public interface ProductRepository extends CrudRepository<Product, Long> {
List<Product> findByName(String name, Pageable pageable);

List<Product> findByNameLike(String pattern, Limit max, Sort... sorts);

You can define simple sorting expressions by using property names.
Sort name = Sort.asc("name");
You can combine sorting with a starting page and maximum page size by using property names.

Pageable pageable = Pageable.ofSize(20).page(1).sortBy(Sort.desc("price"));
first20 = products.findByNamelLike(name, pageable);

2.5. Precedence of Sort Criteria

The specification defines different ways of providing sort criteria on queries. This section discusses
how these different mechanisms relate to each other.

13

2.5.1. Sort Criteria within Query Language

Sort criteria can be hard-coded directly within query language by making use of the @Query
annotation. A repository method that is annotated with @Query with a value that contains an ORDER
BY clause (or query language equivalent) must not provide sort criteria via the other mechanisms.

A repository method that is annotated with @Query with a value that does not contain an ORDER BY
clause and ends with a WHERE clause (or query language equivalents to these) can use other
mechanisms that are defined by this specification for providing sort criteria.

2.5.2. Static Mechanisms for Sort Criteria

Sort criteria is provided statically for a repository method by using the OrderBy keyword or by
annotating the method with one or more @0rderBy annotations. The OrderBy keyword cannot be
intermixed with the @0rderBy annotation or the @Query annotation. Static sort criteria takes
precedence over dynamic sort criteria in that static sort criteria is evaluated first. When static sort
criteria sorts entities to the same position, dynamic sort criteria is applied to further order those
entities.

2.5.3. Dynamic Mechanisms for Sort Criteria

Sort criteria is provided dynamically to repository methods either via Sort parameters or via a
Pageable parameter that has one or more Sort values. Sort andPageable containing Sort must not
both be provided to the same method.

2.5.4. Examples of Sort Criteria Precedence

The following examples work through scenarios where static and dynamic sort criteria are
provided to the same method.

// Sorts first by type. When type is the same, applies the Pageable's sort criteria
Page<User> findByNameStartsWithOrderByType(String namePrefix, Pageable pagination);

// Sorts first by type. When type is the same, applies the criteria in the Sorts
List<User> findByNameStartsWithOrderByType(String namePrefix, Sort... sorts);

// Sorts first by age. When age is the same, applies the Pageable's sort criteria
@0rderBy("age")
Page<User> findByNameStartsWith(String namePrefix, Pageable pagination);

// Sorts first by age. When age is the same, applies the criteria in the Sorts
@0rderBy("age")
List<User> findByNameStartsWith(String namePrefix, Sort... sorts);

// Sorts first by name. When name is the same, applies the Pageable's sort criteria
@Query("SELECT u FROM User u WHERE (u.age > ?1)")

@0rderBy("name")

KeysetAwarePage<User> olderThan(int age, Pageable pagination);

14

2.6. Keyset Pagination

Keyset pagination aims to reduce missed and duplicate results across pages by querying relative to
the observed values of entity properties that constitute the sorting criteria. Keyset pagination can
also offer an improvement in performance because it avoids fetching and ordering results from
prior pages by causing those results to be non-matching. A Jakarta Data provider appends
additional conditions to the query and tracks keyset values automatically when KeysetAwareSlice or
KeysetAwarePage are used as the repository method return type. The application invokes
nextPageable or previousPageable on the keyset aware slice or page to obtain a Pageable which keeps
track of the keyset values.

For example,

public interface CustomerRepository extends CrudRepository<Customer, Long> {
KeysetAwareSlice<Customer> findByZipcodeOrderByLastNameAscFirstNameAscIdAsc(
int zipcode, Pageable pageable);

You can obtain the next page with,

for (Pageable p = Pageable.ofSize(50); p != null;) {
page = customers.findByZipcodeOrderByLastNameAscFirstNameAscIdAsc(55901, p);

p = page.nextPageable();
}

Or you can obtain the next (or previous) page relative to a known entity,

Customer c e
Pageable p = Pageable.ofSize(50).afterKeyset(c.lastName, c.firstName, c.id);
page = customers.findByZipcodeOrderByLastNameAscFirstNameAscIdAsc(55902, p);

The sort criteria for a repository method that performs keyset pagination must uniquely identify
each entity and must be provided by:

* OrderBy name pattern of the repository method (as in the examples above) or @OrderBy
annotation(s) on the repository method.

» Sort parameters of the Pageable that is supplied to the repository method.

2.6.1. Example of Appending to Queries for Keyset Pagination

Without keyset pagination, a Jakarta Data provider that is based on Jakarta Persistence might
compose the following JPQL for the findByZipcodeOrderByLastNameAscFirstNameAscIdAsc repository
method from the prior example:

15

SELECT o FROM Customer o WHERE (o.zipCode = ?1)
ORDER BY o.lastName ASC, o.firstName ASC, o.id ASC

When keyset pagination is used, the keyset values from the Cursor of the Pageable are available as
query parameters, allowing the Jakarta Data provider to append additional query conditions. For
example,

SELECT o FROM Customer o WHERE (o.zipCode = ?1)
AND ((o.lastName

OR (o0.lastName

OR (o.lastName

Vv

72)
?2 AND o.firstName > ?73)
?2 AND o.firstName = ?3 AND o.id >

74)
)
ORDER BY o.lastName ASC, o.firstName ASC, o.id ASC

2.6.2. Avoiding Missed and Duplicate Results

Because searching for the next page of results is relative to a last known position, it is possible with
keyset pagination to allow some types of updates to data while pages are being traversed without
causing missed results or duplicates to appear. If you add entities to a prior position in the traversal
of pages, the shift forward of numerical position of existing entities will not cause duplicates
entities to appear in your continued traversal of subsequent pages because keyset pagination does
not query based on a numerical position. If you remove entities from a prior position in the
traversal of pages, the shift backward of numerical position of existing entities will not cause
missed entities in your continued traversal of subsequent pages because keyset pagination does not
query based on a numerical position.

Other types of updates to data, however, will cause duplicate or missed results. If you modify entity
properties which are used as the sort criteria, keyset pagination cannot prevent the same entity
from appearing again or never appearing due to the altered values. If you add an entity that you
previously removed, whether with different values or the same values, keyset pagination cannot
prevent the entity from being missed or possibly appearing a second time due to its changed values.

2.6.3. Restrictions on use of Keyset Pagination

* The repository method signature must return KeysetAwareSlice or KeysetAwarePage. A repository
method with return type of KeysetAwareSlice or KeysetAwarePage must raise
UnsupportedOperationException if the database is incapable of keyset pagination.

* The repository method signature must accept a Pageable parameter.
* Sort criteria must be provided and should be minimal.
* The combination of provided sort criteria must uniquely identify each entity.

* Page numbers for keyset pagination are estimated relative to prior page requests or the
observed absence of further results and are not accurate. Page numbers must not be relied
upon when using keyset pagination.

16

» Page totals and result totals are not accurate for keyset pagination and must not be relied upon.

* A next or previous page can end up being empty. You cannot obtain a next or previous Pageable
from an empty page because there are no keyset values relative to which to query.

* A repository method that is annotated with @Query and performs keyset pagination must omit
the ORDER BY clause from the provided query and instead must supply the sort criteria via
@0rderBy annotations or Sort parameters of Pageable. The provided query must end with a WHERE
clause to which additional conditions can be appended by the Jakarta Data provider. The
Jakarta Data provider is not expected to parse query text that is provided by the application.

2.6.4. Keyset Pagination Example with Sorts

Here is an example where an application uses @Query to provide a partial query to which the
Jakarta Data provider can generate and append additional query conditions and an ORDER BY clause.

public interface CustomerRepository extends CrudRepository<Customer, Long> {
("SELECT o FROM Customer o WHERE (o.totalSpent / o.totalPurchases > ?1)")
KeysetAwareSlice<Customer> withAveragePurchaseAbove(float minimum, Pageable
pagination);

}

Example traversal of pages:

for (Pageable p = Pageable.ofSize(25).sortBy(Sort.desc("yearBorn"), Sort.asc("name"),
Sort.asc("id")));
p = null;) {
page = customers.withAveragePurchaseAbove(50.0f, p);

p = page.nextPageable();
¥

17

Chapter 3. Jakarta Data CDI Extension

To run in environments with Jakarta Contexts and Dependency Injection (CDI), Jakarta Data
providers each register their own CDI extension (jakarta.enterprise.inject.spi.Extension) to
produce the bean instances that are defined via the Repository annotation and injected via the
Inject annotation. The Jakarta Data specification employs several strategies for reducing and
avoiding conflicts between Jakarta Data providers. The entity annotation class is used as the
primary strategy. The Jakarta Data provider name serves as a secondary strategy.

3.1. Entity Annotation Class

The jakarta.persistence.Entity annotation from the Jakarta Persistence specification can be used
by repository entity classes for Jakarta Data providers that are backed by a Jakarta Persistence
provider. Other Jakarta Data providers must not support the jakarta.persistence.Entity
annotation.

The jakarta.nosql.Entity annotation from the Jakarta NoSQL specification can be used by
repository entity classes for Jakarta Data providers that are backed by NoSQL databases. Other
Jakarta Data providers must not support the jakarta.nosql.Entity annotation.

Jakarta Data providers that define custom entity annotations must follow the convention that the
class name of all supported entity annotation types ends with Entity. This enables Jakarta Data
providers to identify if a repository entity class contains entity annotations from different Jakarta
Data providers so that the corresponding Repository can be ignored by Jakarta Data providers that
should not provide it.

Jakarta Data provider CDI Extensions must ignore all Repository annotations where annotations for
the corresponding entity are available at run time and none of the entity annotations are supported
by the Jakarta Data provider. Ignoring these Repository annotations allows other Jakarta Data
providers to handle them.

3.2. Jakarta Data Provider Name

The entity annotation class will usually be sufficient to avoid conflicts between Jakarta Data
providers, but in cases where the entity annotation class is not sufficient, the application can
designate the name of the desired Jakarta Data provider on the optional provider attribute of the
Repository annotation.

Jakarta Data provider CDI Extensions must ignore all Repository annotations that designate a
different provider’s name via the Repository.provider() annotation attribute. Ignoring these
annotations allows other Jakarta Data providers to handle them.

18

Chapter 4. Interoperability with other
Jakarta EE Specifications

When running within a Jakarta EE product, other Jakarta EE Technologies might be available
depending on the profile. This section defines how related technologies from other Jakarta EE
Specifications interoperate with Jakarta Data.

4.1. Jakarta Transactions Usage

When running in an environment where Jakarta Transactions is available and a global transaction
is active on the thread of execution for a repository operation and the data source backing the
repository is capable of transaction enlistment, the repository operation enlists the data source
resource as a participant in the transaction. The repository operation does not commit or roll back
the transaction that was already present on the thread, but it might cause the transaction to be
marked as rollback only (jakarta.transaction.Status.STATUS_MARKED_ROLLBACK) if the repository
operation fails.

When running in an environment where Jakarta Transactions and Jakarta CDI are available, a
repository method can be annotated with the jakarta.transaction.Transactional annotation, which
is applied to the execution of the repository method.

4.2. Interceptor Annotations on Repository Methods

When a repository method is annotated with an interceptor binding annotation, the interceptor is
bound to the repository bean according to the interceptor binding annotation of the repository
interface method, causing the bound interceptor to be invoked around the repository method when
it runs. This enables the use of interceptors such as jakarta.transaction.Transactional on
repository methods when running in an environment where the Jakarta EE technology that
provides the interceptor is available.

19

	Jakarta Data
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Jakarta Data
	Chapter 1. Introduction
	1.1. Goals
	1.2. Non-Goals
	1.3. Conventions
	1.4. Jakarta Data Project Team
	1.4.1. Project Leads
	1.4.2. Committers
	1.4.3. Mentor
	1.4.4. Contributors

	Chapter 2. Repository
	2.1. Repositories on Jakarta Data
	2.2. Entity Classes
	2.3. Queries Methods
	2.3.1. Using the Query Annotation
	2.3.2. Query by Method
	2.3.3. Entity Property Names

	2.4. Special Parameter Handling
	2.5. Precedence of Sort Criteria
	2.5.1. Sort Criteria within Query Language
	2.5.2. Static Mechanisms for Sort Criteria
	2.5.3. Dynamic Mechanisms for Sort Criteria
	2.5.4. Examples of Sort Criteria Precedence

	2.6. Keyset Pagination
	2.6.1. Example of Appending to Queries for Keyset Pagination
	2.6.2. Avoiding Missed and Duplicate Results
	2.6.3. Restrictions on use of Keyset Pagination
	2.6.4. Keyset Pagination Example with Sorts

	Chapter 3. Jakarta Data CDI Extension
	3.1. Entity Annotation Class
	3.2. Jakarta Data Provider Name

	Chapter 4. Interoperability with other Jakarta EE Specifications
	4.1. Jakarta Transactions Usage
	4.2. Interceptor Annotations on Repository Methods

